Problem Statement
The task is to implement an AVL tree with operations such as insertion and in-order traversal to display the elements in sorted order.
Key Concepts
- Node Structure: Each node will contain a value, pointers to its left and right children, and a height attribute.
- Height Calculation: The height of a node is defined as the longest path from that node to a leaf.
- Balancing: After each insertion, the tree must be balanced. This involves checking the balance factor (difference in height between left and right subtrees) and performing rotations if necessary.
Operations
- Insertion: Insert a new value while maintaining the binary search tree properties and balancing the tree.
- Rotations: Use single and double rotations to rebalance the tree:
- Right Rotation
- Left Rotation
- Left-Right Rotation
- Right-Left Rotation
- In-Order Traversal: This will allow us to see the elements of the AVL tree in sorted order.
C Program for AVL Tree
Here’s a complete C program to implement an AVL tree:
#include <stdio.h>
#include <stdlib.h>
// Structure for an AVL tree node
struct AVLNode {
int key;
struct AVLNode *left;
struct AVLNode *right;
int height;
};
// Function to get the height of the node
int height(struct AVLNode *N) {
if (N == NULL) return 0;
return N->height;
}
// Function to get the maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
// Function to create a new AVL node
struct AVLNode* newNode(int key) {
struct AVLNode* node = (struct AVLNode*)malloc(sizeof(struct AVLNode));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // New node is initially added at leaf
return node;
}
// Right rotate the subtree rooted with y
struct AVLNode* rightRotate(struct AVLNode *y) {
struct AVLNode *x = y->left;
struct AVLNode *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
// Return new root
return x;
}
// Left rotate the subtree rooted with x
struct AVLNode* leftRotate(struct AVLNode *x) {
struct AVLNode *y = x->right;
struct AVLNode *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
// Get the balance factor of the node
int getBalance(struct AVLNode *N) {
if (N == NULL) return 0;
return height(N->left) - height(N->right);
}
// Function to insert a key in the subtree rooted with node and returns the new root of the subtree
struct AVLNode* insert(struct AVLNode* node, int key) {
// 1. Perform the normal BST insert
if (node == NULL) return newNode(key);
if (key < node->key) {
node->left = insert(node->left, key);
} else if (key > node->key) {
node->right = insert(node->right, key);
} else {
return node; // Duplicates are not allowed
}
// 2. Update the height of this ancestor node
node->height = 1 + max(height(node->left), height(node->right));
// 3. Get the balance factor of this ancestor node to check whether it became unbalanced
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key) {
return rightRotate(node);
}
// Right Right Case
if (balance < -1 && key > node->right->key) {
return leftRotate(node);
}
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
// return the (unchanged) node pointer
return node;
}
// Function for in-order traversal
void inOrder(struct AVLNode *root) {
if (root != NULL) {
inOrder(root->left);
printf("%d ", root->key);
inOrder(root->right);
}
}
// Main function
int main() {
struct AVLNode *root = NULL;
int n, key;
printf("Enter the number of elements to insert: ");
scanf("%d", &n);
printf("Enter %d elements:\n", n);
for (int i = 0; i < n; i++) {
scanf("%d", &key);
root = insert(root, key);
}
printf("In-order traversal of the AVL tree:\n");
inOrder(root);
printf("\n");
return 0;
}
Explanation of the Code
- Node Structure:
- Each node has a key, pointers to its left and right children, and a height attribute.
- Height and Balance Functions:
- The
height
function returns the height of a node. - The
getBalance
function calculates the balance factor of a node (left height – right height).
- The
- Rotations:
- The program implements right and left rotations to maintain the AVL tree properties.
- Insertion:
- The
insert
function adds a new key while ensuring the tree remains balanced after each insertion.
- The
- In-Order Traversal:
- The
inOrder
function prints the keys in ascending order by recursively traversing the left subtree, then the current node, and finally the right subtree.
- The
- Main Function:
- The main function allows the user to input multiple elements, inserting each into the AVL tree and then performing an in-order traversal to display the sorted elements.
Input and Output Example
Input
codeEnter the number of elements to insert: 7
Enter 7 elements:
10 20 30 40 50 25 5
Output
codeIn-order traversal of the AVL tree:
5 10 20 25 30 40 50
Explanation of the Output
In this case, the user inserts the elements into the AVL tree. The in-order traversal outputs the keys in sorted order, demonstrating that the tree maintains its properties as a binary search tree.
Conclusion
This C program effectively implements an AVL tree, allowing for efficient insertion and in-order traversal. The balancing mechanism ensures that operations remain efficient even as elements are added, making AVL trees a robust choice for maintaining ordered data. You can experiment with different sets of inputs to see how the AVL tree adjusts itself and maintains balance.